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Designing Case-Control Studies
by Takashi Yanagawa*

Identification of confounding factors, evaluation of their influence on cause-effect associations, and the
introduction of appropriate ways to account for these factors are important considerations in designing
case-control studies. This paper presents designs useful for these purposes, after first providing a statistical
definitionofa confounding factor. Differences in the ability to identify and evaluate confounding factors and
estinate disease risk between designs employing stratification (matching) and designs randomly sampling
cases and controls are noted. Linear logistic models for the analysis ofdata from such designs are described
and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The
methods are applied to data from a multiple factor investigation of lung cancer patients and controls.

Introduction
Case-control studies play an essential role in

studying cause-effect relationships in human popu-
lations (1-3). Applications of these studies are be-
coming more and more complex, as was pointed out
by McKinlay (4) in her recent review, with emphasis
increasingly being given to the investigation and es-
timation of multivariate sources of variation. Thus
modern multivariate statistical techniques could and
should be applied in both the design and analysis of
such case-control studies. This requires that statisti-
cians understand many important ideas traditionally
developed in epidemiology and that epidemiologists
obtain a knowledge of complicated multivariate
statistical techniques. It is hoped that this paper,
written by a mathematical statistician beginning the
study of epidemiology, may aid epidemiologists and
statisticians in their mutual understanding.
The paper reviews recent developments in the de-

sign of case-control studies, including confounding,
overmatching, and effect modification from a
theoretical viewpoint after introducing a statistical
definition of a confounding factor. Methods of iden-
tification of confounding factors, evaluation of their
influence on the measurement of cause-effect as-
sociations, and a method to control for their influ-
ence are discussed. Linear logistic models to aid in
this process are introduced and applied to the
analysis of a set ofdata from lung cancer patients and
controls.
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University 33, Fukuoka 812, Japan.

Case-Control Studies
Let us consider the exposure and disease associa-

tion in the population. Table 1 provides an example
ofthe distribution of a rare disease and exposure to a
single substance in the population; the prevalence
rate of disease is 55/100,000, and half the population
is exposed to the factor.

If the marginal column totals are fixed, then we
have the cell probabilities given in Table 2. Table 2
suggests that if equal numbers of exposed and unex-
posed individuals were to be followed, well over
10,000 unexposed persons would be required before
cases of disease could be expected. This type of

Table 1. Population distribution of exposure to a factor and disease
status.

Unexposed Exposed Total

Disease 5 50 55
Disease-free 49,995 49,950 99,945

Total 50,000 50,000 100,000

Table 2. Probabilities of the disease in Table 1 when the marginal of
the exposure is fixed.

Unexposed Exposed

Disease 0.0001 0.0010
Disease-free 0.9999 0.9990

Total 1 1
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Table 3. Probabilities of the exposure in Table 1 when the marginal
of the disease is fixed.

Unexposed Exposed Total

Disease 0.1 0.9 1
Disease-free 0.5 0.5 1

Table 4A. Joint distributions ofexposure to a factorE and a variable
Z in cases and controls.

Zi Z2

E E E E Total

D 0.032 0.162 0.714 0.092 1
D 0.234 0.234 0.520 0.012 1

follow-up study is called a prospective or cohort
study.
On the other hand, if the row marginal totals are

fixed, then we have the cell probabilities given in
Table 3. These numbers suggest that under 100 dis-
eased and disease-free individuals would be re-
quired. Such a study is called a retrospective, or
case-control study, since past exposure to the factor
is determined retrospectively among diseased and
disease-free individuals. MacMahon and Pugh (3)
have discussed several reasons for their preference
of the terms "cohort" and "case-control" over the
terms "prospective" and "retrospective." We shall
follow their preference throughout this paper.

Case-control studies may be, as was shown in the
above example and had been pointed out by Mantel
and Haenszel (1), the only feasible approach to the
study of cause-effect association for especially rare
diseases, since a cohort study may prove too ex-
pensive to consider, and the study size required to
obtain a respectable number of cases completely
unmanageable.
Both case-control studies and cohort studies are

able to study only cause-effect association, not
prove cause-effect relationships. Mantel and
Haenszel (1) have warned that "the findings of a
retrospective study are necessarily in the form of
statements about association between diseases and
factors, rather than about cause and effect relation-
ships." Such studies play an important role in the
chain of scientific investigation of suspected cause-
effect relationships. They are a part of the cyclic
process of formulating hypotheses, examining the
hypotheses against existing data, and then (testing)
the hypotheses through various epidemiologic and
experimental studies. The most significant purpose
ofepidemiology is the prevention ofdisease. For that

purpose it may not be necessary to identify the
causal factors precisely.
Recognition ofa cause-effect association, which is

sometimes called epidemiologic association, can
play an essential role in the prevention of disease.
MacMahon and Pugh (3) made this point as follows:
"The evaluation of the causal nature of a relation-
ship, in the absence of direct experiment, is neither
easy nor objective. Differences of opinion resulting
from the subjective assembly and interpretation of
evidence are common. Caution in judging relation-
ships to be causal is laudable. On occasion, however,
such caution appears to be carried to an unrealistic
extreme. When the derivation of experimental evi-
dence is either impracticable or unethical, there
comes a point in the accumulation of evidence when
it is more prudent to act on the basis that the associa-
tion is causal rather than to await further evidence. If
there is controversy or argument, it should center
around the decision as to where this point lies, and
not on the unanswerable question of whether the
causal hypothesis is not proven."
When marked increases in disease frequency in a

short period of time are observed, sudden exposure
to a single factor can generally be suspected, and it
would not be difficult to elucidate the cause-effect
association by case-control studies. Applications of
such studies to the more difficult problems of cancer
epidemiology were begun in 1950, and the usefulness
of this approach was established in the much-
publicized studies clarifying the smoking and lung
cancer relationship. Since the publication of the
milestone paper by Mantel and Haenszel (1) which
provided a methodology for the design and analysis
ofmodern case-control study, studies have been un-
dertaken to examine cause-effect associations with
cancers of almost all sites.

Application of case-control studies to cancer
epidemiology requires careful attention in the design
of such studies, since effects of confounding vari-
ables such as sex and age, measurement errors,
selection of controls, etc., could exaggerate or mask
the association. One limitation of the case-control
study is that it often depends upon information re-
trieved from the memories of individuals, or from
poorly written documents. Because of these prob-
lems, case-control studies are often considered to be
inferior to cohort studies. But where cancer
epidemiology is concerned, this may not be true.
Such problems may just be common features of
studying human populations. Even if we could de-
vise randomization or stratification in cohort
studies, we would have no choice but to await the
onset of disease. If the disease had a long latency
period, follow-up could prove to be difficult or im-
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possible, and we could expect to face problems
similar to those generated by case-control studies.
Problems associated with case-control studies have
been discussed by many authors, including Mantel
and Haenszel (1), Cochran (5), MacMahon and Pugh
(3), Lilienfeld (6), and others. A review and an ex-
tensive list of papers on the design and analysis of
observational studies have been published by Mc-
Kinlay (4).

In the following sections we shall use the tools of
theoretical statistics to examine various ideas which
were introduced mainly by epidemiologists; em-
phasis will be placed on confounding, effect modifi-
cation, and the logistic linear model, all of which are
important in the design and analysis of case-control
studies.

A Measure of Association
We shall introduce a measure of association be-

tween an exposure and the disease we wish to study.
Since a primary goal of a case-control study is to
reach the same conclusion as would have been ob-
tained from a cohort study, if one had been done
under complete control, we choose to define the
measure within a prospective framework. Let
P (DIE) [P (DIE)] be the probability of disease in an
individual previously exposed (unexposed) to a fac-
tor, P (DIE) [P (DIE)] be the probability of being
disease-free for an individual previously exposed
(unexposed) to the factor. The relative risk RR of
disease due to the factor is defined by Eq. (1):

P (DIE)
RR= _ (1)

P (DIE)
Cornfield (7) showed that if the prevalence of the
disease is small enough, the relative risk can be ap-
proximated by the odds ratio (2)

P(DIE) P(DIE) (2)

P(DIE) P(DIE)
It follows from Bayes' theorem that 4i can be rewrit-
ten as in Eq. (3):

= P(EID) P(ED)
P(EID) P(EID)

where P (EID) [P (E/D)] is the probability of ex-
posure (no exposure) among diseased individuals
and P (EID) [P (E/D)] is the probability of exposure
(no exposure) among disease-free individuals. This
representation s-hows that tp may be estimated by a
case-control study. t, provides, therefore, a rationale
for replacing an idealized cohort study with a case-
control framework. Berkson (8) pointed out that the

relative risk measure has several drawbacks. How-
ever, the other measures do not have the invariance
property of q,, or its function, and require outside
knowledge which is frequently unobtainable from a
case-control study. This and other problems of mea-
sures of association are discussed in Fleiss (9).

Confounding Factors
It is well known that exposure and disease associ-

ation such as that between smoking and lung cancer
are often influenced by such factors as sex, age,
ethnic group, and others. Epidemiologists often term
them confounding factors. The influence of con-
founding factors must be eliminated, either through
procedures for selecting controls- by matching the
controls with respect to the relevant factors - or in
the analysis. However, neither an explicit definition
of confounding factor nor a definitive method of
evaluating its influence upon exposure and disease
association has been given. In fact, which factors
among many should be selected for case-control
matching in studying exposure and disease associa-
tion remains one of the most confusing and trouble-
some problems in the design of case-control studies.
For example, matching on those factors known or
strongly suspected to be related to disease occurr-
ence was suggested by Mantel and Haenszel (1) and
Worcester (10), among many others, whereas Miet-
tinen (11) suggested matching on factors related to
both exposure and disease. Hardy and White (12)
emphasized matching factors related to exposure,
although they generally agreed with Miettinen. Care
must be taken in using this terminology. As was
pointed out by Fisher and Patil (13), the phrases
"related to disease" and "related to exposure", as
used in the Miettinen article are ambiguous and can
be understood in several different ways. To resolve
this difficulty, we shall give a statistical definition of
"confounding factor" and consider its relation to
"relatedness."
Let z be a third variable. Assume for simplicity

that z is a dichotomous variable (such as sex) taking
on two values, zi (male) and Z2 (female). Let
P(D/E,z), P(D/E,z), P(D/E,z), and P(D/E,z) be the
probabilities of being diseased or disease-free among
individuals exposed or unexposed to the factorE, as
a function of z. Then q, (z), Eq. (4),

P(D/E,z)P(DIE,z)
P(D/E,z)P(DlE,z)

(4)

is the odds ratio as a function of z. 4,, as given in the
previous section, may be written as in Eq. (5),
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Lg (z 1) P(DIE,Zz ) + g(zz)P(DIE,z2)] [h(zl) P(DIE,zl) + h(Z2) P(D/E,Z2)]

[g (Z 1) P(DIE,zZ ) + g(z2) P(DIE,Z2)] [h(z l) P(DIE,z l) + h(Z2) P(D/E,Z 2)]
(5)

where g(z) [h(z)] is the distribution ofz in the exposed
(unexposed) population. We may take g(z) = h(z) by
such devices as stratification or matching, yet it is
clear that 4, is influenced by the distribution ofz. It is
not necessary that 4, = 4, (Z1) = 4, (Z2) hold. For
example, let us consider the data given in Table 4.
From Table 4 A-1, we have 4, = (Z1) = *(Z2) = 5.06,
yet from Table 4 A-2 4, = 1.05.
DEFINITION: confounding factor z is a factor

which violates

4, = +i(z) for some value of z.

In the above example it would be reasonable to
accept *(Z1) = t,(Z2) = 5.06 as a proper association of
the exposure and the disease, and to consider 4, =
1.05 as an improper association biased by the con-
founding factor z; in other words, we may say that
the influence of the confounding factor z on t, is
blocked by the stratification on z.

Stratification is applied regularly to block the in-
fluence ofconfounding variables. Note that matched
pairs design is an extreme form of stratification,
where only a case and a control are in each stratum.
Generally, a 2 x 2 table is constructed for each
stratum, the odds ratio is estimated and tested, and a
summary statistic is calculated to summarize results
obtained from all strata. Identification of confound-
ing variables is a most difficult step in this procedure.
Even if we could identify them successfully, we oc-

Table 4A-1. Expected number of observations based on Table 4A
when stratified by means of z.

zia Z2a

E E Total E E Total

D 33 167 200 d 177 23 200
L) 100 100 200 d 195 5 200

*zi) = 5.06; I1,Z2) = 5.07.

Table 4A-2. Expected number of observations based on Table 4A
when the variable z is ignored.a

E E Total

D 149 51 200
D 151 49 200

a= 1.05.

casionally must ignore some factors whose influence
on the association is not strong, especially if the
number of cases is not large. For example, if the
number of confounding variables were 10, then we
would have to distribute cases among at least 210 =
1024 strata, an unfortunate situation if the number of
cases were, for example, 300 or so. Therefore, in
designing such a study, identification ofconfounding
variables that exist in studying the exposure-disease
relationship, evaluation of the strength of their influ-
ence, and introduction of efficient devices, such as
matching, stratification, or others, to block their in-
fluence on the measure of association are essential.
Next we shall consider the work of Miettinen in

relation to the term confounding factor as defined
above. The terms "related" and "unrelated" are
defined as follows.
DEFINITION: Z is said to be related to disease when

at least one of the probabilities P(DIE,z) and
P(DIE,z) depends on z, i.e., altering the value of z
changes the probability of disease among exposed or
among unexposed individuals. z is said to be related
to exposure when at least one of the probabilities
P(EID,z) and P(EID,z) depends on z. If z is not re-
lated to disease, i.e., neither P(DIE,z) nor P(D/E,z)
depends on z, z is said to be unrelated to disease.
Similarly, ifz is not related to exposure, z is said to be
unrelated to exposure.

It may be proved under general conditions that
+,(z) = 4, for any value ofz if and only ifz is unrelated
to at least one of the entities exposure and disease.
Therefore from our definition of a confounding fac-
tor we are led to the same conclusion as that of
Miettinen: a confounding factor is one related to both
exposure and disease. Although it is difficult to
check whether the variable z is related to exposure in
a case-control framework, it would be extremely
difficult to check whether z is related to disease.
Note that P(DIE,z) is the absolute risk of disease due
to exposure to the factor. Generally, it is impossible
to study absolute risk from a case-control framework
unless further information is obtained from outside
knowledge.

Fortunately, however, the interpretation of "re-
lated" which will be given below makes it possible to
identify a confounding factor and to evaluate its in-
fluence on a cause-effect association, even from a
case-control study. Let us consider Table 5 showing
the joint distribution of exposure to a factor in cases
and in controls.
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Table 5

Zi Z2

E E E E Total

D P1i P12 P13 P14 1
D Poi P02 P03 P04 1

If we define

_ P1P03
qi(DzIE) =

PoiP13 (6)

P12PO4
EfDzIE) = _ _

P02P14 (7)

q(EzID) = _____
P12IP13 (8)

- POUP04
I(Ez/D) =

Po2Po3 (9)
then it can be proved that the factor z is unrelated to
the disease if and only if [Eq. (10)]

q(DzIE) = j(Dz/E) = 1 (10)

and z is unrelated to the exposure if and only if

tp(Ez/D) = +(EzID) = 1

This is the situation of overmatching discussed by
Miettinen.
MacMahon and Pugh (3) suggested another case of

overmatching: "Variables intermediate in the causal
pathway between the study factor and the disease
should not be matched. For example, if smoking
altered blood cholesterol, which in turn was casually
associated with cardiovascular disease, smoking
would be considered a cause of cardiovascular dis-
ease. Yet, in a case-control study, if cases and con-
trols are matched on cholesterol levels, no associa-
tion of the disease with smoking would emerge."
This suggests that, although blood cholesterol is a
confounding factor, it should not be used for match-
ing. Here we find one weakness of our statistical
definition of a confounding factor. It is not feasible in
the present framework to check whether the factor is
intermediate in the causal pathway or not. This is
essentially a point which must be resolved through
medical knowledge.
As an illustration, let us consider the data sum-

marized in Table 6. We have qi(zu) = q(Z2) = 1.0,
whereas iJ = 5.0. This would be an example of over-
matching if z were an intermediate factor in the
causal pathway. However, if this is not the case,
avoidance of matching provides a spurious associa-
tion. From Table 6B we have *(Dz) = 405.8,

(I 1)

Therefore, z is a confounding factor if and only if
both of Eqs. (10) and (11) are violated. The mag-
nitude of the violations reflects the strength of the
influence of the confounding factor. The last point
will be discussed further in the remaining sections.
Note that the above table for the joint distribution is
not stratified on z. So long as stratification and 2 x 2
table analysis are used in a case-control study, it is
not feasible to check whether the factor is related to
disease or not.

Overmatching
Miettinen (11) has considered another important

problem: overmatching. If a factor z is unrelated to
exposure, nothing is changed by matching on z. Thus
matching is futile. However, if a factor z is unrelated
to disease but related to exposure, matching by z
decreases the efficiency (i.e., increases the variance)
of estimated relative risk, although it does not
change the valueof the estimated relative risk itself.
It can be proved that the stronger the relation to
exposure, i.e., the larger the value of qi(EzID), the
greater the decrease in efficiency. Thus in such a
situation matching is harmful and should be avoided.

Table 6B. Joint distributions ofexposure to a factorE and a variable
Z among cases and controls.

Zi Z2

E E E E Total

D 0.010 0.001 0.495 0.494 1
D 0.746 0.074 0.091 0.089 1

Table 6B-1. Expected number of observations based on Table 6B
when stratified by means of z.

Z1 Z2

E E Total E E Total

D 182 18 200 d 100 100 200
D 182 18 200 d 101 99 200

Table 6B-2. Expected number of observations based on Table 6B
when the variable z is ignored.a

E E Total

D 101 99 200
D 167 33 200

a = 4.96.
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q'(Dz E) = 410.7, qi(Ez D) = 9.86 and qi(Ez[D) = 9.98.
These figures indicate that z is related to both ex-
posure and disease, i.e., that is a confounding factor.
Studying the relation of z to the disease could be
more important than studying the present exposure
and disease association, since the large values of
4u(DzIE) and tp(Ez ~E) indicate that z is a predictor of
the disease. It might be suspected that q'(zi) = q(Zz2)
<4 because the data were matched on a predictor of
the disease. However, this is not true. Roughly, the
strength of the influence of the confounding factor z
upon cause-effect association can be measured by
the absolute value of

T = [q (DzIE) - 1] [q(Ez D) - 1]
If T > 0, then

J(Z1)= tp(Z2) <tI

and if T <0, then

4' (Z1) = i (Z2) > +

pose of explaining it. That effect modification is
equivalent to second-order interaction is well known
arnong statisticians.
Let qi(zi) and q'(Z2) be the relative risks of disease

associated with exposure in strata z 1 and Z2. If IQ(z1)
vQi(z2), then we can say that the effect of exposure

upon disease status in stratum zi is not equal to that
in stratum Z2 (because of the existence of second-
order interaction). Such a factor z has been called an
effect modifier. The magnitude ofeffect modification
is measured by either

e.m. = O(Z2)/A(Z1)
e.m. = *P(Ez[D)/tp(Ez|D)

(12)

(13)
or

e.m. = +(Dz [E)At(Dz 1 ) (14)

where tp(EzD), qi(EzD), and qi(Dz[E) are defined as
in the previous section. Effect modification will be
discussed further in the next section.

This suggests that when z is a predictor of the dis-
ease, it is not its role as predictor but rather its
relation to the exposure that leads to an under-or
overestimation problem. Thus how strongly the
strength of association of z with disease status is not
logically related to overmatching. In concluding this
section we emphasize the necessity of checking
whether a factor which is identified by our statistical
methods as a confounding factor is an intermediate
factor in the causal pathway before matching upon it.

Effect Modification
"z is related to exposure" is defined in the previ-

ous section by "at least one ofP(EP,z) and P(E[ ,z)
depends on z". It is not unnatural to suppose that the
influence of z = Zi on the exposure probability
among cases is equal to that among controls for any
fixedz, so that ifP(ED,z) depends onz,P(ED,z) also
depends on z, and vice versa. The principle of
pairwise-matching (stratification), where a control
with the same value of z as a case is selected for
comparison seems to have been based upon this
idea. Cox's model (14) to prove the optimality of the
McNemar test for matched pairs data, Cornfield and
Haenszel's discussion (15) of the relative risk es-
timator for matched pairs data, Gart's method (16) of
calculating a summary statistic by estimating the
common odds ratio by strata, and many other studies
have all assumed it implictly or explicitly. However,
this is not true in general. Miettinen (17) noted this
fact and introduced effect modification for the pur-

A Model with Two Risk Factors to
Illustrate Confounding and Effect
Modification
The following discussion regarding the joint effect

of two risk factors in inducing disease should clarify
understanding of confounding and effect modifica-
tion.
Let A and B be factors suspected of inducing dis-

ease. Let us suppose for simplicity that both of them
are dichotomous. Table 7 summarizes a prospective
framework of probability distributions, where
P(D[4,B) is the probability ofdisease in an individual
exposed to neither A nor B, P(DI4,B) [P(D[,B)] is
the probability of disease after exposure to A (B)
alone, and P(D[4,B) is the disease probability after
exposure to both A and B. Then P(DA4,B) IP(D[4,B)
is the relative risk due to B among those unexposed
toA and P(D[4,B) / P(D[4,B) is the relative risk due
toB among those exposed to A. If these relative risks

Table 7.

A A

B B B B

D P(D[,4Bf P(D|A,B) P(D[4,B) P(D[4,B)
D 1 - P(DA4,B) 1 - P(D[4,B) 1 - P(D[4,B) I - P(D4,B)
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are equal, one might say that factorsA andB have no
joint effect (no interaction), then we might say there
isapositive joint effect (positive interaction); we will
say there is a negative joint effect (negative interac-
tion) otherwise. Let us define y, through Eq. (15):

P(D[4,B) P(D[4,B) P(D[A,B)
I

P(D[A,B) P(D|4,B) P(D|4,B)
(15)

We will say there is no interaction if y' = 1, positive
interaction if y' > 1, and negative interaction if
y' < 1. When y' = 1, equation (1) states that the
relative risk due to exposure to both A and B is the
product of the relative risks due to exposure A and B
separately. For this reason, (1) is frequently called a
multiplicative risk model.

Setting
{AA = log [P(Dj4,B)/P(D4A,B)]
AB = log [P(DI4,B)/P(D[4,B)]
Y = log y, (16)

Eq. (15) is equivalent to

P(DjA,B)
log(

4,B

= 'AA + A&B + Y 17ZOP(D|A,B) (17)

where y = 0, y > 0 and y < 0 indicate no interaction,
positive interaction, and negative interaction, re-
spectively.
Next, let us recast this example in a case-control

framework. The data are presented in Table 8, where
Pj(AB) is the probability of disease when there is no
exposure to either A or B, Pi (AB) [P,(AB)] is the
probability after exposure toA (B) alone, and P1(AB)
is the probability after exposure to both A and B,
among cases (i = 1) and controls (i = 0). Let us define

{AA = log [Po(AB)/Po(AB)]
AB = log [Po(AB)/Po(AB)]
a = log [Po(AB)/Po(AB)]- A /-.AB (18)

Further, let us accept Cornfield's assumption that
the prevalence of this disease is small enough so that
the relative risks are approximated by the corre-

Table 8. Joint distribution of exposure to A and B in cases and
controls.

A A

B B B B Total

Cases Pl(AB) P1(AB) Pi(AB) Pi(AB) 1
Controls Po(AB) Po(AB) Po(AB) Po(AB) 1

sponding odds ratios. Then it follows from Eqs.
(16)-(18) that

log [P1(AB)/P1(AB)] = 1A + AA
log [P1(AB)/Pi(AB)] = FB + AB
log [P1(AB)/P1(AB)] = /JA + LB + a + AA + AB + Y

(19)

which is an extension of the well-known logistic
linear model for 2 x 2 table analysis [see, for ex-
ample, Cox (18)] to a 2 x 4 table. The multiplicative
risk model (15) in a prospective framework is,
therefore, equivalent to (18) and (19) in a case-
control framework, under Cornfield's assumption.
The parameters of interest are AA, the log relative
risk of A, AB, the log relative risk of B, and their
interaction y. Thus parameters lA, I.B, and a are
nuisance parameters introduced by the case-control
framework.

Finally, let us suppose that cases and controls
have been stratified in the design by means of the
factorA, i.e., unexposed and exposed to A. Then we
have Table 9.

Table 9.

A A

B B Total B B Total

Cases 1 - Pi(Bl4) Pi(BI4) 1 1 - PO(B[4) PO(BO4) I
Controls 1 - Po(B[A) Po(B|A) I 1 - Po(B[4) Po(B[4) I

where Pi (BIA) [Pi(BIA)] is the probability of ex-
posure toB in the stratum A (A) for cases (i = 1) and
controls (i = 0). It follows from Eqs. (18) and (19) that

log Pi(BIA) = AB + iAB
1 - Pj(B 4)
Pj(B|A)

log - Pj(B[4)
1- Pj(B|A)

UB + a + i(AB + y)

for i = 0, 1 (20)

Relative risks due to B within strata A and A are
given by qp = exp {A1} and qi = exp {AB + )/},
respectively.
Summarizing the above discussion, we may con-

clude that yA and AA are deleted from model (19)
when we stratify on factor A; in other words, as has
been well known, we should not stratify (or match)
cases and controls on a factor that is under investi-
gation. a and y may not be deleted from model (19)
after stratification; in other words odds ratios for B
within strataA andA are not equal, unless there is no
interaction between A and B in the sense of relative
risk. Since the factor A as considered in the
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framework of model (20) is identical to the variable z
discussed in the previous sections, we may say that
Miettinen's effect modifier is a factorz that has some
interaction with the factor under investigation. The
discussion above regarding confounding variables is
illustrated by model (20) as follows. Let us set z = A,
Z=A andZ2 = A.

If Az = y = 0, then z is not a confounding factor.
If y = 0 and Az > 0, then

+ = q+(z) for all z is equivalent to a = 0;
q > tl(Zz') = q' (Z2) if and only if a > 0;
1 < l(Zl) = ql(Z2) if and only if a < 0.

Further, since a = 0, a > 0 and a < 0 if and only if
the joint distributions of exposure to B and z among
the cases are independent, positively and negatively
correlated respectively, we have:
+ = q(Z 1) = tI(Z2) if and only if thejoint distribution of
exposure to B and z in the cases are independent;
t > 44Zl) = t(Z2) if and only if those ofB and z in the
cases are positively correlated;
and * < p(z 1) = i (Z2) if and only if those ofB and z in
the cases are negatively correlated. In the first of
these cases, z is not a confounding factor.

If 'y 4 0, then z is a confounding factor.
The strength of the influence of the confounding

factor upon exposure and disease association may be
measured by Eq. (21)

T = (exp {a} - 1) (exp {AA} - 1)
+ (exp {^y} - 1) (1 + exp {fA}) exp {a} exp {AA}I

(21)
Many of the authors' studies cited above have as-
sumed essentially that y = 0. Note that the applica-
tion of the maximum likelihood method to the model
with y = 0 provides the same summary odds ratio as
Gart (16). However, if further risk factors were ig-
nored in the study, -y = 0 still could not be expected
even if A were definitely known not to induce dis-
ease, since the value of y could be influenced by
some ignored factor which had interaction with the
factor under investigation. Further, suppose that
both A and B are (strong) risk factors and have no
synergistic relationship in inducing disease. Then y
should be negative since it measures interaction on
the multiplicative scale, whereas a synergistic re-
lationship is measured on the additive scale (3).
The model of Eq. (20) agrees with a special case of

that considered by Prentice (2). He called z (i.e.,
factor A) a confounding factor if a $ 0. However,
this may not be true. A counter example is given in
Table 10. Here qP(zi) = 4' (Z2) = 4 = 6, so z is not a
confounding factor, yet a = - 0.85.
The definition of a confounding factor is equiva-

lent to the "collapsibility of categories" discussed
by Bishop, Feinberg, and Holland (19). The results

Table 10. Comparison of pooled and unpooled data.

Unpooled dataa Pooled datab

zi Z2

B B B B Total B B Total

Cases 5 15 35 45 100 40 60 100
Controls 10 5 70 15 100 80 20 100

*zi) = 6, *1Z2) = 6.

bo 6.

a log (15/10) - log (5/10) - log (70/10) = -0.85

summarized above agree with their deductions,
which were obtained by means of log linear models.

Classification and Stratification
In the model of Eq. (19) controls are selected from

a population comparable to the population of cases;
then it is determined into which of the classes AB,
AB, AB or AB they fall. On the other hand, in the
model of Eq. (20), a predetermined number of con-
trols are selected among those individuals who have
A and A, respectively, and they are then classified
according to whether they have B or B. Therefore,
we could say that the first model is based on classifi-
cation, whereas the second model is based on
stratification. The difference lies in the sampling
strategies. The first model provides a relative risk,
not only for factor B but also for factor A. Even
though A is thought not to induce disease, we may
fid the relative risk greater than 1. Investigation of
the reason could often provide further information.
For example, place of residence is normally not a
risk factor for lung cancer, yet we might find the
relative risk for some location greater than 1. Inves-
tigation could reveal the presence of certain suspect
industries in the region. Or perhaps we will find a
relative risk for A of 1 but with y greater (smaller)
than zero. Such a finding would be especially in-
teresting, since it would suggest that factorA alone is
not the risk factor, but that it amplifies (diminishes)
the relative risk ofB if it operates together with B. A
significant advantage of the classification model is its
flexibility. It permits us to identify and to evaluate
the influence ofconfounding factors. It also provides
estimates of relative risks free from the influence of
these factors. Further, as will be seen in a subse-
quent section, it also provides estimates of relative
risks adjusted for combinations of factors. Gener-
ally, the model (19) provides more information than
the model (20).
A drawback of the sampling strategy which leads

Environmental Health Perspectives150



to model (19) is that the estimates of AB and y are
likely to be influenced by any bias present in the
selection of controls. This should be seriously con-
sidered in a case-control study, since it further com-
plicates the usual difficulties in selecting controls.
Another advantage of stratification is that we can

increase our precision in estimating AB and y by
selecting an appropriate number of controls from
each stratum.
Summarizing the above discussion, we recom-

mend the following strategy: (1) stratify cases and
controls by means of confounding variables which
are definitely known not to induce disease and which
are not of interest to the investigation; (2) classify
cases and controls by means of confounding vari-
ables whose role in the induction of disease is known
or suspected.. An analytic model for this approach
will be discussed in the next section.
Table 8, where cases and controls are classified by

means ofAB, AB, AR, and AB, can be broken into
two 2 x 2 tables and analyzed. A beautiful analysis
based on this approach was given by Prentice (2). His
approach enables us to decrease the number of pa-
rameters to be estimated. However, the bias and
precision of the estimated parameters are the same,
at least asymptotically, in this model as in the model
of Eq. (19). Because of this, and for the reasons
mentigned above, analysis based on the model of Eq.
(19) is recommended. If necessary, the relative risk
within strata A and Acould be represented by exp
{AB} and eXP{AB + y}, which are sometimes called
the relative risks forB adjusted for the factor A. Our
method yields an estimate of summary relative risk
when y is set to zero.
A weak point of the analysis based on the model of

Eq. (19) is when the number of cases and controls is
small, since the usual methods for estimation of pa-
rameters employ asymptotic approximations. In this
case Breslow's (20) recent approach is useful. He has
given an exact analysis, considering all the marginal
totals of the two 2 x 2 tables in Table 8 to be fixed.
The model which he applied is the linear model for
the log odds ratio, which is derived from our model,
Eq. 20, as follows:

Ps(BIA) [1 - Po (BI4)]
log = AB

[1 -Pi(BIA)] Po(B|A)
Pl(BA4) [1 - Po(B41)]
[I-_Pl_B4PoB =A4 +)lg[1 - P(B[4)] Po(B[A) (22)

He made use of a computer program to carry out the
exact analysis. However, as the number ofcases and
controls becomes large, computation time becomes
prohibitive.

A Model Taking into Account
Classification and Stratification
Simultaneously, Where One
Factor Assumes More Than Two
Values
Let us consider a model with simultaneous

stratification and classification, where one variable
can take on more than two values. We shall consider
first a situation where there are two factors A and B.
Let us suppose B is dichotomous, where A is tri-
chotomous, with possible valuesA o, Al, A2. Table 11

summarizes the probability distributions for cases
and controls, where both are classified on A and B.
An analytic model for Table 11 is given in Eqs.

(23)-(27),

log (Piol/Pioo) =AB + iAB
log (Pil1Pioo) AA(1) + iAA(l)
log (PisP10ioo)

log (Pi211Pioo)

= LA(1) + /B + aA(1)B
+ i(A(l) + AB + YA1)B)

= UA(2W + iAA(2)
= hA(2) + LB + aA(2)B

+ i(AA(2) + AB + YA(2)R)

(23)
(24)

(25)
(26)

(27)

where AA(M), AA(2) and AB are log odds ratios for the
factors Ai, A2, and B, YA(M)B is the interaction of
factors Ai and B (i = 1, 2), and the other parameters
are nuisance parameters introduced by the case-
control framework.
Next, let us expand on Table 11 by stratifying on

certain confounding variables z and w, such as age
and sex. Let us denote by Pijk (z,w) the probability
Pijk in the stratum specified by z and w. Then the
analytic model is given by Eqs. (28)-(30).

log [Pio1(z,w)1P1oo(z,w)] = /.B + ZaZR + WaWB
+ ZWoZWB + i[RB + ZYZB + WYWB + ZW6ZWB] (28)

log [Pijo(Z,W)IPjoo(Z,W)] = hA(i) + ZazA(3) + WaWAj)
+ ZW/3zwAU) + i[AA(j) + ZYzAU) + WYWA(j)
+ ZW8zwA()] (29)

Table 11. Probability distributions of cases and controls.

Ao Ai A2

B B B B B B Total

Cases P1oo P1o0 P11o Plll Pl20 P121 1
Controls Pooo Pool Po0o PoII P020 P021 1
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log [Pj,j(z,w)IPbioo(z,w)] = /AA) + B + aA(j)B
+ Z(aZB + aZA(U) + I3ZAU)B)
+ w(aWB + aWA(J) + f3WAU)B)
+ ZW(J3ZWB + f3zwAU) + 13zwA(j)B) + iEAU) + AB + AA(;)B
+ Z(YZB + YZAU) + 8ZAU)B) + W('YWB + 'YwA(i) + 8WA(j)B)
+ ZW(8ZWB + 8ZWAU) + 8ZWA(j)B)] (30)

fori = 0, 1 andj = 1, 2, where parameters YzAU)' YZB,
,YwAS) and 'YWB are interactions of z and Aj, z and B, w
and Aj, and w and B; 8ZWA(j) &zwB 88ZA()B and 8WA(j)B are
the interactions ofz, w, and Aj; z, w, and B; z, Aj, and
B; and w, Aj, and B. 6ZWA(j)B is the interaction of z, w,
Aj, and B; other parameters newly introduced are
nuisance parameters introduced by the case-control
framework.
Normally it would be rare to have information

beyond third-order interactions. In the simpler case,
similar results to those based on the above model
could be obtained by applying a model which ignores
the ,8 and 8 parameters in the above model.
Parameters for these models can be estimated by

the weighted least squares method of Grizzle,
Starmer, and Koch (21), or by the method of
maximum likelihood intensively discussed in the
book of Bishop, Feinberg, and Holland (19). The
number of parameters in these models looks ex-
cessive. But I suggest that it is better to start from a
saturated model and to undertake an iterative pro-
cess to reach the most appropriate and simplest
model that could explain the structure of data in
detail; starting from the above model, first estimate
all parameters, then examine them, deleting those
that do not contribute significantly and finally de-
velop a simplified model. The approach would be
especially useful if a case-control tudy were an ex-
ploratory one intended to locate causal factors. If it is
a confirmatory study, then we should use, of course,
all information obtained from previous studies as
weHl as existing knowledge to establish a simpler
model for the initial model. Statistical methods, such
as the "Akaike information criterion" (AIC) (22), all
possible regressions (23), stepwise regressions (24),
etc., can be applied to determine how many param-
eters should be included in the model. In my ex-
perience, the method employed by Grizzle, Starmer,
and Koch is the most handy and efficient among
others for that purpose, although special care is nec-
essary in applying the method if empty cells exist.

Number of Cases and Controls
Generally, the number of confounding factors and

the number of levels of each factor to be considered
in the study are determined, therefore, based on the
number of cases. If the group of cases is not large,

then we must ignore some confounding factors or
decrease the number of levels ofcertain factors, e.g.,
by collapsing the age categories into wider ranges for
each stratum. If this process is suspected of intro-
ducing serious bias, we may have to switch to pair-
matching. However, a well-known difficulty of
matched pairs design lies in the selection of controls.
Cochran (5) has estimated that the reservoir from
which controls are to be selected must be at least six
times the size of the number of cases. Prentice (7)
proposed a method to liberalize the study design
substantially and increase the estimating efficiency.
This is a method of adjusting for the unavailability of
a corresponding matched individual statistically in
the analysis. The model proposed in the last section
has the same property as Prentice's, when individu-
als are matched on z and w.

Special attention must be paid to the empty cells
before collapsing the exposure categories or other-
wise changing procedures in order to eliminate them,
since they are likely to provide considerable infor-
mation; for example, if the exposure categories are
ordered in some way and there is a strong dose-
response relationship with respect to that ordering,
then extreme cells for the controls could well be
empty. If such is the case the number of controls
should be increased to eliminate the empty cells; if
no such dose-response relationship is seen, then re-
liance on the previously discussed stratification on a
selected set of confounding variables would be suit-
able. An advantage of the models discussed in previ-
ous sections is that even if, say, 10% of the cells for
cases and controls are empty, we can use the infor-
mation obtained from the 90% of the cells that are not
empty to estimate parameters which will represent
the structure of the data satisfactorily.

It is not yet well established how to determine how
many cases are necessary when several confounding
factors are taken into account. It depends both on
financial restrictions and on the purpose ofthe study.
Let us ignore the former and consider only the latter.
LetA andB be suspected (dichotomous) risk factors
which are of interest. IfA is the target factor, then the
familiar method discussed intensively in the book of
Fleiss (9) may be applied to a 2 x 2 table, obtained by
ignoring the factor B, to get a rough estimate of the
required number of cases. If A and B are equally
important factors and the investigation is intended to
determine the effects ofbothA and B, as well as their
interactions, in inducing disease, then a test of the
degree of interaction could help to determine the
required number ofcases. Ifthere is a priori evidence
that interaction does not exist, a rough estimate of
the required number could be obtained by applying
the above method to two 2 x 2 tables, one obtained

Environmental Health Perspectives152



by ignoring the factor B and the other by ignoring
factor A, and by using the larger number.

An Illustrative Example of the
Method

Information on lifetime smoking and occupational
histories for 101 white male coastal Georgia resi-
dents diagnosed with lung cancer during 1970-76,
and for 203 white male age- and residence-matched
hospital controls diagnosed with conditions other
than lunig cancer or lung disease, was obtained by
personal interview.* Each case and control was clas-
sified into one of three smoking levels based on his
cigarette smoking history: (1) none or light (< ½2
pack/day) (includes individuals who quit smoking at
least 10 years before diagnosis); (2) moderate (1/2 to
1½2 packs/day); (3) heavy (2 or more packs/day).
Each individual was also categorized (yes/no) as to
whether he had ever been employed in each of the
shipbuilding or construction industries. The result-
ing responses are listed in Table 12. A model with 22
parameters, similar to the one discussed in the last
section, was set up as a preliminary model. A step-
wise procedure was carried out, using the weighted
least-squares method of Grizzle, Starmer, and Koch
(21), and 10 of the 22 parameters were eliminated,
leaving the model (31) as the one best reflecting the
structure of the data given in Table 12.

log (Poigj/Poooo) = (2 - 0)6IAMl) + [i(i 1)/2]UA(2)+jaB
+ lp.c + i(2 - i)laAM(lC + [i(i 1)1/2]aA(2)C
+ [i(i - 1 /2]aA(2)B

*The data presented here, which were provided to the author by
Dr. William J. Blot, represent only a part of a complete case-

control study; they were selected for illustrative purposes and
should not be used to draw inferences about cancer risk. A de-
tailed description of the Georgia study and a full report of the
results is given elsewhere (25).

log (PlijI/Piooo) = log (Poiji/Poooo) + (2 i)iAA(l)
+ Ui(i - 1)/2]AA(2) + jAB + /AC + [i(3 - i) l/2]yAc

i= 1,2;j=0, I;l=0, 1 (31)

where AA(M) and AA(2) are the log relative risks due to
moderate and heavy smoking, respectively, as com-
pared to none or light; AB the log relative risk due to
employment in the shipbuilding industry as com-
pared to nonemployment in the industry; and Ac the
log relative risk due to employment in the construc-
tion industry as compared to non-employment in the
industry; interactions ofA1 and C and A2 and C are
assumed to be equal and are represented by yAc; the
other parameters are nuisance parameters intro-
duced by the case-control framework.
Table 13 summarizes estimates of the 12 parame-

ters in of the model (31) and their standard devia-
tions. Computed values for the variances and
covariances of estimates of AA(M), AA(2), AB, and Ac,
and yAC are summarized in Table 14.
The influence of an empty cell in Table 12 was

Table 13. Estimated values of parameters used in the model shown
in Eq. (31) and their standard deviations (SD).a

Parameters Estimates SD.

AM(1) -0.6070 0.1887
PAA) -1.2040 0.2393
IJ-B -1.6759 0.2036
AC -1.0616 0.2236

aA(l)c 0.7157 0.3180
aA(2)C -0.2510 0.4289
A(2)B -1.4812 0.6179
AA(M) 2.4214 0.5130
AA(2) 3.0165 0.5385
AB 0.6559 0.3349
AC 1.5488 0.6142
YAC -1.3960 0.6882

aRelative risks: smoking, exp {AA(1)} = 11.26 (moderate), exp
{AA(2)} = 20.42 (heavy); ship building, exp {AB} = 1.93; construc-
tion, exp {/Ac} = 4.71.

Table 12. Exposure to shipbuilding, construction, and smoking for lung cancer cases and controls.a

Ao Ai A2

Bo Bi Bo Bi Bo Bi

Co Ci Co Ci Co Ci Co Ci Co Ci Co Ci Total

Cases 4 5 1 3 25 17 6 8 23 7 1 1 101
3.7 6.0 1.3 2.2 22.6 18.9 8.1 6.7 22.5 7.0 1.9 .6 101

Controls 68 22 10 5 37 23 5 7 20 5 1 0 203
65.5 22.7 12.2 4.2 35.7 25.2 6.7 4.7 19.7 5.2 .8 .2 203

aPredictionsfrom model of Eq. (31). Factors:A, smoking (Ao = non smoking or light,Ai = moderate,A2 = heavy);B, ship building (Bo
= unexposed, Bi = exposed); C, construction (Co = unexposed, Cl = exposed).
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Tabl 14. Computed variances and covariances of the estimates of
AA(D)9 AA(2), AB, Ac, and YAC-

AA(D) AA(2) AB AC YAC

AA(l) 0.2631
AA(2) 0.2220 0.2900
AB -0.0005 0.0165 0.1122
AC 0.2129 0.2104 -0.0148 0.3772
YAC -0.2556 -0.2333 0.0041 -0.3758 .4740

determined to be negligible - replacing the zeroes
with values smaller than 1/6 had almost no effect on
the computation. To check the validity of the model,
the number of cases and controls in each category
was predicted from Eq. (31) by using estimated val-
ues for the parameters. The predicted values, sum-
marized in the second and fourth rows of Table 12,
agree fairly well with the original data. Therefore,
the model appears to describe the structure of the
data nicely.
Suppose that our primary interest is in the associ-

ation between exposure toA and lung cancer, withB
and C as additional factors. Adjusted relative risks
due to exposure to A, adjusted for B and C, have a
structure represented in Table 15. Estimates ofthese
relative risks are obtained by substituting the values
for the parameters shown in Table 13. Table 15
shows that the relative risks within stratum Bo are
equal to those within stratum Bi. This results be-
cause in the model in [Eqs. (31)] YAiB = 0, i = 1, 2;
i.e., B is not an effect modifier. B is, however, a
confounding factor, since aA(2)B 7 0. The influence of
B on the association ofA and lung cancer is estimated
by
T = (exp{AB} - 1) (exp {A(A)B} - 1) 0.72

This indicates a slight underestimate of the relative
risk ifB is ignored. On the other hand, C is an effect
modifier, since yAC# 0. The magnitude of the effect
modification is estimated by e.m. = exp {YAC} =
0.25. Thus the relative risk due to A among those

Table 15. Structure of adjusted log relative risks of exposure to
.ning (4) adjusted for exposure to shipbuilding (B) and con-

struction (C).

Adjustment factors

Bo Bi
Study
factor Co Ci Co Ci

Ao I I I I
Al AA(D) AA(D) AA (1)A) + YAC
A2 AA(2) AA(i) + YAC AA(2) AA(2) + YAC

Table 16. Structure of adjusted log relative risks of exposure to
shipbuilding (B) adjusted for exposure to smoking (4) and con-

struction (C).

Adjustment factor

Ao Al A2
Study
factor Co Ci Co Ci Co Ci

Bo 1 1 1 1 1 1
Bi AB AB AB AB AB AB

exposed to C is modified to a quarter of that among
those unexposed to C. The smaller value of the rela-
tive risk due to A among those exposed to C occurs
for the reason discussed above. The influence of C
on the association is estimated by max (ITA(1) ITA, 1),
where
TA(1) = (exp {Ac}- 1) (exp {CaA(1)C}- 1)

+ (exp {YAC}- 1) (1 + exp {/A(1)}) exp {aA(1)C}
exp {AA(1)} = -22.90

TA(2) = -16.36 (32)
Ifthe Mantel-Haenszel method were applied in the

analysis, we would have to ignore eitherB orC, or to
poolAi andA2, since there are several cells in Table
12 whose entries are quite small. Because A is our
study factor, we would prefer no pooling ofA. In that
case, B should be ignored, since its r value is quite
close to zero compared to the corresponding value
for C.
Next, let us assume thatB is our study factor, and

A and C additional factors. Adjusted relative risks
due to exposure toB, adjusted forA and C, have the
structure represented in Table 16. All the entires in a
row are equal. This results because A and C are not
effect modifiers, i.e., in Eq. (31) YA(i)B = YBC = 0,
i = 1, 2. Since aA(2)B 7 0, A is a confounding factor
whose influence on the association is estimated by
max (IT1I,IT21), where

TA(1) = (exp {AA(1)} - 1) (exp {aA(1)B} - 1) = 0
TA(2) = (exp {AA(2)} - 1) (exp {A(2)B}- 1) = -15.00

(33)
The fact that TA(2) is negative indicates than an under-
estimate of the relative risk will result ifA is ignored
in the study. Since aBC = 0, C is not a confounding
factor in the assocation of exposure to B and lung
cancer. Thus, if the Mantel-Haenszel method were
applied in the analysis, C should be ignored for two
reasons: (1) C is related to disease but unrelated to
exposure; (2) the problem of small cell entries dis-
cussed above. When C is ignored and the Mantel-
Haenszel method is applied, the summary statistic
p= 1.87, which is fairly close to exp {AB} = 1.93.
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Conclusion
Identification of confounding factors, evaluation

of their influence on exposure and disease associa-
tion, and the introduction of proper devices, such as
matching, stratification, classification and others,
into the design to block the influence of these factors
are very important in designing case-control studies.
We presented a theoretical review of recent de-
velopments in this area, based on a statistical defini-
tion of confounding factor. With such a definition,
medical knowledge is required to determine whether
or not confounding factors identified by our methods
are intermediate factors in the casual pathway be-
tween the study factor and the disease. If a con-
founding factor is an intermediate factor we should
not match on it (overmatching); if not, we must in-
troduce some device to block its influence. Stratifi-
cation, or matched pairs design in its extreme form,
have been the main design devices for blocking the
influence of confounding factors. However, the
identification of a confounding factor and the evalu-
ation of the strength of its influence on the associa-
tion are not feasible from data selected by such
sampling strategies. However, identification and
evaluation can be achieved through a random sam-
pling of cases and controls from a population and
their classification into categories, based on known
and suspected confounding factors. This paper sug-
gested stratification of cases and controls on those
confounding variables which are definitely known
not to induce disease and which are not of interest in
the study, and classification of cases and controls on
confounding variables which are known or sus-
pected of inducing disease. Logistic linear models
were introduced for the combined purpose of iden-
tification of confounding factors, evaluation of their
influence on the relative risk, and analysis of the
data. They are extensions of the well-known logistic
model for 2 x 2 table analysis, as applied in a case-
control study by Prentice (2). The paper recom-
mends starting from such a model, then following an
iterative process to derive the most appropriate and
simplest model that will explain the structure of the
data in detail. If the study is a preliminary one, the
resulting model can be used to identify the con-
founding factors and evaluate the strength of their
influence on the cause-effect association in prepara-
tion for a follow-up study. Estimates of relative risks
and interactions are also obtained. Estimates of ad-
justed relative risks, adjusted for combinations of
factors, are also obtained by simple manipulation of
the estimated relative risks from the model. In con-
trast to the method of Prentice (2), this approach
requires only a single computer calculation, not suc-

cessive iterations, but it shares with Prentice (2) the
ability to adjust for the unavailability of matches for
some individuals, if pair-matching is applied to cer-
tain confounding factors such as age. Thus it can
substantially liberalize the study design and increase
estimating efficiency.
Bishop, Feinberg, and Holland (19) have dis-

cussed thoroughly the analysis of frequency data by
log linear models. The definition of a confounding
factor given in this paper is identical to their concept
of "collapsibility of categories." Thus their general
approach could be used quite effectively in case-
control studies. Statisticians may prefer their ap-
proach. However, it could result in useless statistical
manipulation for epidemiologists unless statisticians
understand precisely traditional epidemiological
ideas which have been developed in the field. We
hope that discussions in the present paper will help
them to understand such ideas and apply them in
their epidemiological research.
Case-control studies are becoming more complex

in design and analysis, where, as was pointed out by
McKinlay (2), "emphasis is increasingly being given
to the investigation and estimation of multivariate
sources of variation rather than simply being re-
stricted to the removal of bias from a single com-
parison." Although the design and analysis of
case-control studies using logistic linear models as
introduced in the present paper seem complicated,
such models, as well as the log linear model dis-
cussed by Bishop, Feinberg, and Holland (19), will
play a central role in such studies.
The main part of the present study was carried out while I was a

Visiting Scientist at the Environmental Epidemiology Branch,
National Cancer Institute, Bethesda, Md., 20014, U.S.A. I am
grateful to Dr. Joseph F. Fraumeni, Chief of the Branch, and to
Dr. William J. Blot, my sponsor, who provided me with an ex-
cellent opportunity for examining statistical problems in cancer
epidemiology.
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